3.702 \(\int \frac{\sqrt{c+d x}}{x \sqrt{a+b x}} \, dx\)

Optimal. Leaf size=85 \[ \frac{2 \sqrt{d} \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b x}}{\sqrt{b} \sqrt{c+d x}}\right )}{\sqrt{b}}-\frac{2 \sqrt{c} \tanh ^{-1}\left (\frac{\sqrt{c} \sqrt{a+b x}}{\sqrt{a} \sqrt{c+d x}}\right )}{\sqrt{a}} \]

[Out]

(-2*Sqrt[c]*ArcTanh[(Sqrt[c]*Sqrt[a + b*x])/(Sqrt[a]*Sqrt[c + d*x])])/Sqrt[a] + (2*Sqrt[d]*ArcTanh[(Sqrt[d]*Sq
rt[a + b*x])/(Sqrt[b]*Sqrt[c + d*x])])/Sqrt[b]

________________________________________________________________________________________

Rubi [A]  time = 0.0504983, antiderivative size = 85, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.273, Rules used = {105, 63, 217, 206, 93, 208} \[ \frac{2 \sqrt{d} \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b x}}{\sqrt{b} \sqrt{c+d x}}\right )}{\sqrt{b}}-\frac{2 \sqrt{c} \tanh ^{-1}\left (\frac{\sqrt{c} \sqrt{a+b x}}{\sqrt{a} \sqrt{c+d x}}\right )}{\sqrt{a}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[c + d*x]/(x*Sqrt[a + b*x]),x]

[Out]

(-2*Sqrt[c]*ArcTanh[(Sqrt[c]*Sqrt[a + b*x])/(Sqrt[a]*Sqrt[c + d*x])])/Sqrt[a] + (2*Sqrt[d]*ArcTanh[(Sqrt[d]*Sq
rt[a + b*x])/(Sqrt[b]*Sqrt[c + d*x])])/Sqrt[b]

Rule 105

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> Dist[b/f, Int[(a
+ b*x)^(m - 1)*(c + d*x)^n, x], x] - Dist[(b*e - a*f)/f, Int[((a + b*x)^(m - 1)*(c + d*x)^n)/(e + f*x), x], x]
 /; FreeQ[{a, b, c, d, e, f, m, n}, x] && IGtQ[Simplify[m + n + 1], 0] && (GtQ[m, 0] || ( !RationalQ[m] && (Su
mSimplerQ[m, -1] ||  !SumSimplerQ[n, -1])))

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 93

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{\sqrt{c+d x}}{x \sqrt{a+b x}} \, dx &=c \int \frac{1}{x \sqrt{a+b x} \sqrt{c+d x}} \, dx+d \int \frac{1}{\sqrt{a+b x} \sqrt{c+d x}} \, dx\\ &=(2 c) \operatorname{Subst}\left (\int \frac{1}{-a+c x^2} \, dx,x,\frac{\sqrt{a+b x}}{\sqrt{c+d x}}\right )+\frac{(2 d) \operatorname{Subst}\left (\int \frac{1}{\sqrt{c-\frac{a d}{b}+\frac{d x^2}{b}}} \, dx,x,\sqrt{a+b x}\right )}{b}\\ &=-\frac{2 \sqrt{c} \tanh ^{-1}\left (\frac{\sqrt{c} \sqrt{a+b x}}{\sqrt{a} \sqrt{c+d x}}\right )}{\sqrt{a}}+\frac{(2 d) \operatorname{Subst}\left (\int \frac{1}{1-\frac{d x^2}{b}} \, dx,x,\frac{\sqrt{a+b x}}{\sqrt{c+d x}}\right )}{b}\\ &=-\frac{2 \sqrt{c} \tanh ^{-1}\left (\frac{\sqrt{c} \sqrt{a+b x}}{\sqrt{a} \sqrt{c+d x}}\right )}{\sqrt{a}}+\frac{2 \sqrt{d} \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b x}}{\sqrt{b} \sqrt{c+d x}}\right )}{\sqrt{b}}\\ \end{align*}

Mathematica [A]  time = 0.298471, size = 120, normalized size = 1.41 \[ \frac{2 \sqrt{d} \sqrt{c+d x} \sinh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b x}}{\sqrt{b c-a d}}\right )}{\sqrt{b c-a d} \sqrt{\frac{b (c+d x)}{b c-a d}}}-\frac{2 \sqrt{c} \tanh ^{-1}\left (\frac{\sqrt{c} \sqrt{a+b x}}{\sqrt{a} \sqrt{c+d x}}\right )}{\sqrt{a}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[c + d*x]/(x*Sqrt[a + b*x]),x]

[Out]

(2*Sqrt[d]*Sqrt[c + d*x]*ArcSinh[(Sqrt[d]*Sqrt[a + b*x])/Sqrt[b*c - a*d]])/(Sqrt[b*c - a*d]*Sqrt[(b*(c + d*x))
/(b*c - a*d)]) - (2*Sqrt[c]*ArcTanh[(Sqrt[c]*Sqrt[a + b*x])/(Sqrt[a]*Sqrt[c + d*x])])/Sqrt[a]

________________________________________________________________________________________

Maple [B]  time = 0.015, size = 133, normalized size = 1.6 \begin{align*}{\sqrt{bx+a}\sqrt{dx+c} \left ( \ln \left ({\frac{1}{2} \left ( 2\,bdx+2\,\sqrt{ \left ( bx+a \right ) \left ( dx+c \right ) }\sqrt{bd}+ad+bc \right ){\frac{1}{\sqrt{bd}}}} \right ) d\sqrt{ac}-\ln \left ({\frac{1}{x} \left ( adx+bcx+2\,\sqrt{ac}\sqrt{ \left ( bx+a \right ) \left ( dx+c \right ) }+2\,ac \right ) } \right ) c\sqrt{bd} \right ){\frac{1}{\sqrt{ \left ( bx+a \right ) \left ( dx+c \right ) }}}{\frac{1}{\sqrt{bd}}}{\frac{1}{\sqrt{ac}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x+c)^(1/2)/x/(b*x+a)^(1/2),x)

[Out]

(d*x+c)^(1/2)*(b*x+a)^(1/2)*(ln(1/2*(2*b*d*x+2*((b*x+a)*(d*x+c))^(1/2)*(b*d)^(1/2)+a*d+b*c)/(b*d)^(1/2))*d*(a*
c)^(1/2)-ln((a*d*x+b*c*x+2*(a*c)^(1/2)*((b*x+a)*(d*x+c))^(1/2)+2*a*c)/x)*c*(b*d)^(1/2))/((b*x+a)*(d*x+c))^(1/2
)/(b*d)^(1/2)/(a*c)^(1/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)^(1/2)/x/(b*x+a)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 3.21187, size = 1600, normalized size = 18.82 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)^(1/2)/x/(b*x+a)^(1/2),x, algorithm="fricas")

[Out]

[1/2*sqrt(d/b)*log(8*b^2*d^2*x^2 + b^2*c^2 + 6*a*b*c*d + a^2*d^2 + 4*(2*b^2*d*x + b^2*c + a*b*d)*sqrt(b*x + a)
*sqrt(d*x + c)*sqrt(d/b) + 8*(b^2*c*d + a*b*d^2)*x) + 1/2*sqrt(c/a)*log((8*a^2*c^2 + (b^2*c^2 + 6*a*b*c*d + a^
2*d^2)*x^2 - 4*(2*a^2*c + (a*b*c + a^2*d)*x)*sqrt(b*x + a)*sqrt(d*x + c)*sqrt(c/a) + 8*(a*b*c^2 + a^2*c*d)*x)/
x^2), -sqrt(-d/b)*arctan(1/2*(2*b*d*x + b*c + a*d)*sqrt(b*x + a)*sqrt(d*x + c)*sqrt(-d/b)/(b*d^2*x^2 + a*c*d +
 (b*c*d + a*d^2)*x)) + 1/2*sqrt(c/a)*log((8*a^2*c^2 + (b^2*c^2 + 6*a*b*c*d + a^2*d^2)*x^2 - 4*(2*a^2*c + (a*b*
c + a^2*d)*x)*sqrt(b*x + a)*sqrt(d*x + c)*sqrt(c/a) + 8*(a*b*c^2 + a^2*c*d)*x)/x^2), sqrt(-c/a)*arctan(1/2*(2*
a*c + (b*c + a*d)*x)*sqrt(b*x + a)*sqrt(d*x + c)*sqrt(-c/a)/(b*c*d*x^2 + a*c^2 + (b*c^2 + a*c*d)*x)) + 1/2*sqr
t(d/b)*log(8*b^2*d^2*x^2 + b^2*c^2 + 6*a*b*c*d + a^2*d^2 + 4*(2*b^2*d*x + b^2*c + a*b*d)*sqrt(b*x + a)*sqrt(d*
x + c)*sqrt(d/b) + 8*(b^2*c*d + a*b*d^2)*x), sqrt(-c/a)*arctan(1/2*(2*a*c + (b*c + a*d)*x)*sqrt(b*x + a)*sqrt(
d*x + c)*sqrt(-c/a)/(b*c*d*x^2 + a*c^2 + (b*c^2 + a*c*d)*x)) - sqrt(-d/b)*arctan(1/2*(2*b*d*x + b*c + a*d)*sqr
t(b*x + a)*sqrt(d*x + c)*sqrt(-d/b)/(b*d^2*x^2 + a*c*d + (b*c*d + a*d^2)*x))]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{c + d x}}{x \sqrt{a + b x}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)**(1/2)/x/(b*x+a)**(1/2),x)

[Out]

Integral(sqrt(c + d*x)/(x*sqrt(a + b*x)), x)

________________________________________________________________________________________

Giac [B]  time = 1.31999, size = 184, normalized size = 2.16 \begin{align*} -\frac{{\left (\frac{2 \, \sqrt{b d} b c \arctan \left (-\frac{b^{2} c + a b d -{\left (\sqrt{b d} \sqrt{b x + a} - \sqrt{b^{2} c +{\left (b x + a\right )} b d - a b d}\right )}^{2}}{2 \, \sqrt{-a b c d} b}\right )}{\sqrt{-a b c d}} + \sqrt{b d} \log \left ({\left (\sqrt{b d} \sqrt{b x + a} - \sqrt{b^{2} c +{\left (b x + a\right )} b d - a b d}\right )}^{2}\right )\right )}{\left | b \right |}}{b^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)^(1/2)/x/(b*x+a)^(1/2),x, algorithm="giac")

[Out]

-(2*sqrt(b*d)*b*c*arctan(-1/2*(b^2*c + a*b*d - (sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))
^2)/(sqrt(-a*b*c*d)*b))/sqrt(-a*b*c*d) + sqrt(b*d)*log((sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d -
 a*b*d))^2))*abs(b)/b^2